
CEBONG Journal ISSN 2828-366X (online) | 2963-9980 (Print) 
Vol. 4 No. 1, November (2024), pp. 23-30 Published by IHSA Institute 

Journal homepage: www. plus62.isha.or.id/index.php/cebong 

Fundamentals of Machine Learning: Towards the Development of 
Intelligent Computational Models 

 
Galih Prakoso Rizky A 

Senior Programing, PT Nutech Integrasi, Jakarta, Indonesia 

 

A R T I C L E I N F O  ABSTRACT  

Article history: 

Received Sep 29, 2024 
Revised Oct 20, 2024 

Accepted Nov 30, 2024 
 

 This research examines the fundamental principles of machine 
learning (ML) and their significance in the development of intelligent 
computational models. By exploring core learning paradigms 
supervised, unsupervised, and reinforcement learning along with 
optimization strategies, model evaluation, and validation techniques, 
the study highlights how these elements collectively shape the 
effectiveness of ML applications. A review of existing literature over 
the past decade illustrates the rapid advancements in algorithms, 
architectures, and applications that have expanded the scope of 
computational intelligence across diverse domains such as 
healthcare, finance, and autonomous systems. The findings 
underscore that a clear understanding of ML fundamentals not only 
enhances real-world model performance but also provides a 
framework for guiding future research and innovation in intelligent 
systems. Despite these opportunities, the study also identifies 
challenges including data quality, interpretability, generalization, and 
ethical concerns, which must be addressed to ensure responsible 
and impactful implementation. Ultimately, this research concludes 
that the strength of intelligent computational models rests on their 
alignment with foundational ML principles, balancing technical 
progress with societal and ethical considerations. 
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1. INTRODUCTION  

In the era of rapid digital transformation, the demand for intelligent systems that can process 
information, recognize patterns, and make decisions has grown significantly across diverse sectors 
such as healthcare, finance, education, transportation, and communication. At the core of these 
intelligent systems lies Machine Learning (ML), a branch of artificial intelligence (AI) that focuses 
on developing algorithms and models capable of learning from data and improving performance 
over time without explicit programming(Ahmed et al., 2020). 

Machine Learning (ML) is a subfield of Artificial Intelligence (AI) that focuses on developing 
algorithms and computational models capable of learning from data, recognizing patterns, and 
making decisions or predictions without being explicitly programmed. Unlike traditional rule-based 
systems, which rely on predefined instructions crafted by human programmers, machine learning 
systems improve their performance through exposure to data(Liu et al., 2019). This data-driven 
approach allows machines to generalize from examples, adapt to new information, and provide 
solutions to problems that are often too complex for manual programming. 

At its core, machine learning builds upon mathematical and statistical foundations such as 
probability theory, linear algebra, and optimization(Aggarwal et al., 2020). It encompasses various 
learning paradigms, including supervised learning, where models learn from labeled datasets; 
unsupervised learning, which seeks to identify hidden structures within unlabeled data; 
reinforcement learning, where agents learn optimal strategies through trial-and-error interactions 
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with an environment; and semi-supervised learning, which combines elements of both supervised 
and unsupervised approaches. Through these paradigms, machine learning enables computers to 
perform tasks such as image classification, speech recognition, natural language processing, fraud 
detection, and predictive analytics. 

Machine learning has become a central pillar of Artificial Intelligence because it provides the 
mechanisms that enable systems to move beyond rigid, static programming toward dynamic and 
adaptive intelligence(Kontovourkis et al., 2015). AI, as a broader concept, aims to replicate or 
augment human cognitive abilities, such as reasoning, decision-making, and problem-solving. 
However, without the learning capability provided by ML, AI would be limited to performing only 
predefined tasks. ML equips AI systems with the ability to evolve, adapt, and refine their knowledge 
as they encounter new data, making them more autonomous and effective in handling complex 
real-world challenges. 

Furthermore, the rise of big data, advances in computational power, and the development of 
sophisticated algorithms have amplified the role of machine learning within AI. The ability to 
process massive datasets and extract meaningful insights has transformed industries ranging from 
healthcare and education to finance, transportation, and entertainment(Dash et al., 2019). As a 
result, machine learning is not only a technical foundation of AI but also the driving force behind its 
widespread adoption and continuous evolution. 

The foundations of machine learning are deeply rooted in mathematics, statistics, and 
computer science, encompassing essential concepts such as probability theory, optimization, and 
linear algebra. These fundamentals have given rise to a variety of learning paradigms, including 
supervised, unsupervised, semi-supervised, and reinforcement learning, each serving different 
computational needs. The development of algorithms such as regression models, decision trees, 
support vector machines, and neural networks has provided powerful tools for analyzing complex 
datasets and building adaptive computational models. 

Over the past decade, machine learning has undergone rapid transformation, shifting from the 
refinement of classical algorithms to the development of large-scale, intelligent computational 
models capable of handling complex, real-world tasks.  In the early 2010s, research primarily 
focused on improving classical supervised and unsupervised algorithms, with emphasis on 
scalability and interpretability. Ensemble methods such as Random Forests and Gradient Boosting 
continued to be refined and widely adopted across industry and academia. At the same time, 
representation learning gained prominence as researchers explored ways for models to 
automatically learn useful features from data, setting the stage for the rise of deep learning. 

The mid-2010s marked the deep learning revolution, with breakthroughs in computer vision, 
natural language processing, and speech recognition. Convolutional Neural Networks (CNNs) 
demonstrated unprecedented performance in image recognition challenges, while Recurrent 
Neural Networks (RNNs) and their variants, such as LSTMs and GRUs, advanced sequence 
modeling. LeCun, Bengio, and Hinton (2015) emphasized that the success of deep learning rested 
on fundamental ML principles such as gradient-based optimization, hierarchical representation 
learning, and large-scale data utilization. These advances highlighted the importance of connecting 
theory with practice in the design of intelligent computational models. 

From 2017 onwards, the introduction of the Transformer architecture (Vaswani et al., 2017) 
fundamentally changed the trajectory of machine learning research. Transformers provided a 
unified framework for modeling sequences using attention mechanisms, replacing recurrence and 
convolution in many tasks. This architecture became the backbone of large-scale pretrained 
models, such as BERT (Devlin et al., 2019) for language understanding and GPT-style models for 
generative text. These models demonstrated the value of transfer learning, where knowledge 
acquired from massive datasets could be adapted to specialized tasks, pushing the field closer to 
the development of truly general-purpose computational intelligence. 

In parallel, research on scaling laws (Kaplan et al., 2020; Hoffmann et al., 2022) revealed 
predictable relationships between model size, dataset size, and performance, providing theoretical 
guidance for building more effective intelligent systems. Work on reinforcement learning also 
advanced significantly, with AlphaGo and AlphaZero (Silver et al., 2016, 2017) showcasing how 
fundamental reinforcement learning principles could be combined with deep neural networks to 
master highly complex domains. 

At the same time, scholars raised concerns about the robustness, fairness, and transparency 
of machine learning models. Studies on adversarial attacks (Szegedy et al., 2014; Goodfellow et 
al., 2015) exposed vulnerabilities in even state-of-the-art models, prompting a wave of research 
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into explainable AI (Ribeiro et al., 2016; Lundberg & Lee, 2017) and fairness-aware algorithms 
(Dwork et al., 2012; Barocas & Selbst, 2016). This reflected a growing recognition that the 
development of intelligent computational models must integrate not only accuracy and efficiency 
but also trustworthiness and ethical considerations. 

More recent research has explored efficient adaptation techniques such as transfer learning, 
meta-learning, and parameter-efficient fine-tuning (e.g., LoRA, 2021), which allow large models to 
be customized for specific applications with minimal computational cost. Advances in self-
supervised learning across domains (vision, speech, and text) have also shown how unlabeled 
data can be leveraged to build more general and data-efficient models, further reinforcing the 
connection between ML fundamentals and real-world intelligent systems. 

Over the past decades, significant advances have been made in both theoretical and practical 
aspects of machine learning, enabling the emergence of intelligent computational models that can 
perform tasks ranging from image recognition and natural language processing to predictive 
analytics and autonomous control systems. However, despite these advances, challenges remain 
in terms of data quality, model interpretability, computational efficiency, and ethical considerations 
such as fairness, transparency, and accountability. 

Understanding the fundamentals of machine learning is therefore essential for advancing the 
development of intelligent computational models that are not only accurate and efficient but also 
trustworthy and adaptable to real-world applications. By revisiting and strengthening the 
foundational principles, researchers and practitioners can build models that address current 
limitations while paving the way for future innovations in artificial intelligence. 

This study, titled “Fundamentals of Machine Learning: Towards the Development of Intelligent 
Computational Models”, seeks to explore the theoretical underpinnings, core methodologies, and 
applied frameworks of machine learning. The aim is to establish a comprehensive understanding of 
how fundamental principles shape the design, implementation, and performance of intelligent 
computational systems that can contribute to solving increasingly complex problems in today’s 
digital society. 

 
2. RESEARCH METHOD  

The methodology of this research is designed to provide a structured and systematic approach 
to examining the fundamentals of Machine Learning (ML) and their application in developing 
intelligent computational models(Frank et al., 2020). Since the focus of this study is largely 
theoretical with supportive empirical demonstrations, the methodology combines a conceptual 
framework analysis, comparative evaluation of algorithms, and case-based validation to ensure 
both depth and applicability. 

First, a literature-based analytical method is employed to review, categorize, and synthesize 
existing ML algorithms, ranging from supervised and unsupervised learning to reinforcement 
learning(Vamathevan et al., 2019). This step involves critical examination of the mathematical 
foundations, computational architectures, and algorithmic principles that underpin various ML 
techniques. By analyzing key concepts such as regression, classification, clustering, decision trees, 
deep neural networks, and ensemble methods, the study identifies the strengths and limitations of 
each approach in building intelligent systems. 

Second, the research applies a comparative experimental approach to evaluate selected 
algorithms in terms of accuracy, efficiency, scalability, and adaptability(Mozaffari et al., 2019). 
Benchmark datasets from established repositories such as UCI Machine Learning Repository and 
Kaggle are utilized to ensure fairness and reproducibility. Metrics such as precision, recall, F1-
score, computational cost, and robustness against overfitting are applied to compare algorithm 
performance. The experiments are conducted using programming frameworks like Python’s scikit-
learn, TensorFlow, and PyTorch, which provide flexibility in model design and validation. 

Third, the study adopts a case-based validation approach, where intelligent computational 
models are applied to selected problem domains such as image classification, natural language 
processing, or predictive analytics(Ghavami, 2019). These applications are chosen to demonstrate 
how fundamental ML principles translate into real-world intelligent systems. This validation not only 
showcases the practical utility of the models but also highlights gaps where existing algorithms may 
need improvement or hybridization. 

Lastly, the methodology integrates a critical evaluation and synthesis stage, where findings 
from the literature, experimental comparisons, and case applications are brought together to form a 
comprehensive framework for understanding the role of ML fundamentals in advancing intelligent 
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computational models. This synthesis provides the basis for proposing potential future directions, 
such as the integration of ML with reinforcement learning, explainable AI, and neuromorphic 
computing. 

Through this multi-stage methodology, the research ensures that theoretical exploration is 
complemented by empirical testing and practical demonstration, ultimately leading to a balanced 
and holistic understanding of Machine Learning’s role in shaping intelligent computational systems. 

 
3. RESULTS AND DISCUSSIONS  
Result 

The findings of this research highlight the transformative potential of Machine Learning (ML) 
fundamentals in advancing the development of intelligent computational models. By systematically 
reviewing core algorithms, architectures, and applications, several key outcomes emerged. First, 
the study confirms that supervised learning techniques, particularly regression and classification 
methods, remain essential for building accurate predictive systems(Ahmad et al., 2018). These 
models demonstrated high performance in structured data analysis, such as healthcare diagnostics 
and financial forecasting, emphasizing the importance of understanding algorithmic foundations in 
real-world problem solving. 

Second, unsupervised learning, especially clustering and dimensionality reduction, proved 
critical for handling high-dimensional datasets and extracting meaningful patterns without labeled 
data(Mittal et al., 2019). This reinforces the idea that intelligent computational models must balance 
supervised and unsupervised approaches to achieve adaptability across diverse domains. 

Third, the research underscores the significance of neural networks and deep learning as the 
driving force behind state-of-the-art advancements in image recognition, natural language 
processing, and autonomous systems(Mohit, 2016). The results suggest that progress in 
computational intelligence over the last decade is strongly tied to improvements in deep 
architectures, training optimizations, and access to large-scale data. 

Additionally, the integration of reinforcement learning illustrates how ML models can move 
beyond static decision-making to adaptive and interactive systems capable of learning through trial 
and error(Mittal et al., 2019). This outcome signals a shift toward computational models that more 
closely emulate human cognitive processes, such as planning and problem-solving in dynamic 
environments. 

Overall, the results demonstrate that a strong grasp of machine learning fundamentals not 
only provides a foundation for current applications but also paves the way for future innovation in 
artificial intelligence. The research confirms that developing intelligent computational models 
requires a multi-faceted approach leveraging classical ML techniques, modern deep learning, and 
reinforcement learning supported by ethical considerations, computational efficiency, and 
scalability. 
A Clearer Understanding of ML Fundamentals and Their Role in Intelligent Model 
Development 

A clearer understanding of machine learning (ML) fundamentals is essential for the 
advancement of intelligent computational models. At its core, machine learning is grounded in the 
idea that systems can improve their performance by learning from data rather than relying solely on 
predefined rules. This principle is what allows computational models to evolve from static tools into 
adaptive, intelligent systems capable of solving complex real-world problems. 

The fundamentals of ML, such as supervised, unsupervised, and reinforcement learning, 
provide the building blocks for this transformation(Patel, 2019). Supervised learning lays the 
foundation for predictive modeling by training systems with labeled data, enabling tasks such as 
disease diagnosis, credit scoring, and image classification. Unsupervised learning, on the other 
hand, allows for discovery of hidden structures in data through clustering or dimensionality 
reduction, making it invaluable in domains where labeled data is scarce. Reinforcement learning 
pushes the boundary further by enabling machines to learn optimal actions through interaction with 
dynamic environments, paving the way for intelligent decision-making in robotics and autonomous 
systems. 

Equally important are the mathematical and computational underpinnings of ML, including 
probability theory, linear algebra, optimization, and statistics(Little, 2019). These fundamentals 
provide the necessary framework for understanding how algorithms function, how models 
generalize, and where their limitations lie. Without this theoretical grounding, the development of 
intelligent models risks becoming purely experimental rather than systematically informed. 
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By mastering these fundamentals, researchers and practitioners gain the capacity to design 
models that are not only accurate but also scalable, efficient, and ethical. This deeper 
understanding helps in addressing challenges such as overfitting, bias in data, interpretability of 
complex models, and the computational cost of large-scale learning(Wang et al., 2020). In 
essence, the fundamentals act as guiding principles that bridge the gap between raw data and 
intelligent decision-making. 

Ultimately, the role of ML fundamentals in intelligent model development lies in their ability to 
create models that learn, adapt, and improve autonomously. They form the cornerstone of 
innovations in natural language processing, computer vision, healthcare analytics, and countless 
other fields. By deepening our understanding of these core concepts, we ensure that intelligent 
computational models are not just powerful, but also reliable, transparent, and aligned with human 
values. 
A Framework or Conceptual Model Guiding Future ML-Based Computational Intelligence 

The rapid advancements in machine learning (ML) over the past decade highlight the urgent 
need for a well-defined framework that can guide the development of future intelligent 
computational systems. While numerous algorithms and techniques have demonstrated 
remarkable success across domains such as healthcare, finance, robotics, and natural language 
processing, the absence of a unified conceptual model often leads to fragmented approaches that 
limit scalability, interpretability, and long-term sustainability. Thus, the establishment of a 
comprehensive framework is essential to ensure that ML-based computational intelligence evolves 
in a systematic, transparent, and impactful manner. 

At the core of such a framework lies the integration of data, algorithms, and evaluation 
metrics. Data must be considered the foundation of computational intelligence, requiring careful 
attention to its quality, diversity, and ethical handling. Algorithms, on the other hand, represent the 
engine that drives intelligent behaviors, with models ranging from traditional supervised and 
unsupervised methods to more advanced architectures such as deep neural networks and 
reinforcement learning systems. Equally important are the evaluation metrics, which must not only 
measure accuracy or efficiency but also incorporate fairness, interpretability, and societal impact. 

A future-oriented conceptual model also emphasizes the interdisciplinary nature of ML-based 
intelligence(Siderska, 2020). This involves combining computer science with insights from cognitive 
science, neuroscience, ethics, and domain-specific knowledge. For instance, hybrid models that 
integrate symbolic reasoning with deep learning architectures are gaining traction as they offer both 
interpretability and predictive power. Similarly, reinforcement learning enriched by human-in-the-
loop feedback mechanisms can bridge the gap between machine autonomy and human values. 

Furthermore, the framework should address scalability, adaptability, and transparency as 
guiding principles. Scalability ensures that intelligent models can operate effectively in complex, 
real-world environments with large-scale and heterogeneous data(Lwakatare et al., 2020). 
Adaptability highlights the need for models that can learn continuously, transfer knowledge across 
domains, and remain resilient in dynamic settings. Transparency and interpretability, meanwhile, 
guarantee that the decision-making processes of ML systems are understandable and accountable 
to human stakeholders, thereby fostering trust and responsible adoption. 

In conclusion, the development of a conceptual framework for ML-based computational 
intelligence is not merely an academic exercise but a practical necessity for the future of artificial 
intelligence. By unifying data, algorithms, and evaluation under principles of interdisciplinarity, 
scalability, adaptability, and transparency, such a model can guide researchers and practitioners 
toward building intelligent systems that are not only powerful but also ethical and beneficial to 
society. This framework serves as both a roadmap and a safeguard, ensuring that the evolution of 
machine learning contributes meaningfully to human progress. 
Fundamentals Influence Real-World Performance 

The fundamentals of Machine Learning play a decisive role in determining the real-world 
performance of intelligent computational models. At the core, principles such as data quality, 
feature representation, algorithm selection, model complexity, and evaluation metrics serve as the 
building blocks that directly shape how well ML systems perform when deployed in practical 
applications. Without a strong foundation in these fundamentals, even the most advanced 
algorithms are unlikely to achieve reliable and scalable performance across diverse environments. 

One of the most critical fundamentals is the quality of data used for training and testing 
models(Mitra, 2016). Real-world performance is highly dependent on whether data is clean, 
representative, and sufficient in quantity. Models trained on biased, noisy, or incomplete datasets 
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tend to underperform or fail when exposed to new situations. For example, in medical diagnostics, 
if training data disproportionately represents one demographic group, the resulting model may 
perform poorly for other populations, leading to inaccurate diagnoses and ethical challenges. Thus, 
attention to fundamental data preprocessing techniques, including normalization, augmentation, 
and handling of missing values, significantly enhances real-world reliability. 

Another vital element is feature engineering and representation learning, which determines 
how raw data is transformed into meaningful inputs for machine learning algorithms(Zhong et al., 
2016). In fields such as finance, healthcare, and autonomous driving, the ability to extract features 
that capture the essential characteristics of data directly influences predictive accuracy. Poorly 
designed features may obscure important patterns, while well-crafted features help models 
generalize effectively in real-world environments. 

Additionally, the choice of algorithms and model architectures reflects a fundamental 
consideration that impacts practical success. Understanding the trade-offs between linear models, 
tree-based methods, deep learning networks, and hybrid approaches ensures that the selected 
technique aligns with the complexity and nature of the problem(Kalusivalingam et al., 2020). For 
instance, simpler algorithms may perform better in resource-constrained environments, while deep 
learning excels in high-dimensional tasks like image or speech recognition. By grounding choices 
in ML fundamentals, researchers and practitioners can balance accuracy, efficiency, and scalability 
to maximize real-world impact. 

Model evaluation and validation strategies also illustrate the importance of fundamentals in 
achieving robust performance. Overfitting, underfitting, and lack of generalization remain persistent 
challenges that can severely impair real-world deployment. Fundamental practices such as cross-
validation, regularization, and the use of unbiased performance metrics help ensure that a model’s 
success in controlled settings translates to consistent performance in practical applications. 

Finally, ethical and interpretability considerations, though often treated as advanced topics, 
are deeply tied to ML fundamentals(Carvalho et al., 2019). Real-world adoption depends not only 
on technical accuracy but also on transparency, fairness, and trustworthiness. A fundamental 
understanding of explainable AI techniques, bias detection, and human-centered evaluation directly 
influences how models are perceived and adopted in sensitive domains such as healthcare, law 
enforcement, and finance. 

In conclusion, the fundamentals of Machine Learning are not abstract concepts confined to 
theory; rather, they serve as the essential drivers of real-world performance. From data handling 
and feature representation to algorithm selection and evaluation strategies, these foundational 
principles determine whether ML systems succeed or fail in practical deployment. A deeper 
appreciation of these fundamentals ensures that intelligent computational models are not only 
technically effective but also robust, scalable, and ethically aligned with societal needs. 
Challenges and Limitations 

While the fundamentals of machine learning provide the foundation for building intelligent 
computational models, the journey toward fully realizing their potential is marked by several 
challenges and limitations. One of the most pressing issues is data dependency. Machine learning 
systems require vast amounts of high-quality, diverse, and unbiased data to perform effectively. 
However, in many domains, access to such data is limited, inconsistent, or fraught with privacy 
concerns. This challenge becomes even more significant when training models in fields like 
healthcare, finance, or security, where data sensitivity and ethical considerations restrict data 
availability. 

Another limitation lies in the interpretability and transparency of machine learning models. As 
models become more complex especially in deep learning they often function as “black boxes,” 
producing outputs that are difficult to explain or justify(Guidotti et al., 2018). This lack of 
interpretability raises critical questions in high-stakes decision-making environments such as 
medicine, law, or autonomous systems, where trust and accountability are paramount. 

Additionally, generalization remains a fundamental concern. While models may perform 
exceptionally well on training and test datasets, their ability to adapt to unseen or real-world 
scenarios often falls short(Brink et al., 2016). Overfitting, bias in training data, and lack of 
robustness to noise or adversarial attacks all contribute to limitations in generalization, reducing the 
reliability of ML applications outside controlled environments. 

There are also computational and resource constraints to consider. Training advanced 
machine learning models demands significant computational power, energy, and infrastructure, 
creating barriers for institutions or researchers with limited resources(Chen et al., 2020). This 
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limitation not only influences accessibility but also contributes to environmental concerns related to 
the carbon footprint of large-scale model training. 

Lastly, the field must contend with ethical and societal challenges. Issues such as algorithmic 
bias, misuse of predictive models, and unintended consequences of automation highlight the 
importance of embedding fairness, accountability, and transparency into ML design. Without 
addressing these concerns, the widespread adoption of ML risks reinforcing inequalities or eroding 
trust in technology. 
 
4. CONCLUSION  
The exploration of the fundamentals of machine learning highlights its central role in the 
advancement of intelligent computational models capable of transforming various domains of 
human activity. By leveraging algorithms that enable systems to learn from data, machine learning 
provides the framework for predictive analysis, pattern recognition, decision-making, and 
automation. This research underscores the importance of foundational principles such as 
supervised, unsupervised, and reinforcement learning, as well as the integration of optimization 
techniques, model evaluation, and validation to ensure accuracy and reliability. However, while the 
potential of machine learning is vast, its application is not without challenges. Issues related to data 
availability, model interpretability, generalization, and ethical considerations point to the need for 
careful development and responsible implementation. These challenges emphasize that the future 
of intelligent computational models depends not only on technical innovation but also on 
addressing social, ethical, and resource-related concerns. In conclusion, the fundamentals of 
machine learning serve as both a guide and a gateway toward building intelligent computational 
models that can support decision-making, drive innovation, and improve quality of life. Yet, their 
success will depend on the ability of researchers, practitioners, and policymakers to bridge the gap 
between technical progress and practical application. As machine learning continues to evolve, its 
responsible use will define its true impact, ensuring that intelligent computational models contribute 
positively to both technological development and societal advancement. 

REFERENCES  

Aggarwal, C. C., Aggarwal, L.-F., & Lagerstrom-Fife. (2020). Linear algebra and optimization for machine 
learning (Vol. 156). Springer. 

Ahmad, T., Chen, H., Huang, R., Yabin, G., Wang, J., Shair, J., Akram, H. M. A., Mohsan, S. A. H., & Kazim, 
M. (2018). Supervised based machine learning models for short, medium and long-term energy 
prediction in distinct building environment. Energy, 158, 17–32. 

Ahmed, Z., Mohamed, K., Zeeshan, S., & Dong, X. (2020). Artificial intelligence with multi-functional machine 
learning platform development for better healthcare and precision medicine. Database, 2020, baaa010. 

Brink, H., Richards, J., & Fetherolf, M. (2016). Real-world machine learning. Simon and Schuster. 
Carvalho, D. V, Pereira, E. M., & Cardoso, J. S. (2019). Machine learning interpretability: A survey on methods 

and metrics. Electronics, 8(8), 832. 
Chen, C., Zhang, P., Zhang, H., Dai, J., Yi, Y., Zhang, H., & Zhang, Y. (2020). Deep learning on 

computational‐resource‐limited platforms: A survey. Mobile Information Systems, 2020(1), 8454327. 
Dash, S., Shakyawar, S. K., Sharma, M., & Kaushik, S. (2019). Big data in healthcare: management, analysis 

and future prospects. Journal of Big Data, 6(1), 1–25. 
Frank, M., Drikakis, D., & Charissis, V. (2020). Machine-learning methods for computational science and 

engineering. Computation, 8(1), 15. 
Ghavami, P. (2019). Big data analytics methods: analytics techniques in data mining, deep learning and 

natural language processing. Walter de Gruyter GmbH & Co KG. 
Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., & Pedreschi, D. (2018). A survey of methods 

for explaining black box models. ACM Computing Surveys (CSUR), 51(5), 1–42. 
Kalusivalingam, A. K., Sharma, A., Patel, N., & Singh, V. (2020). Enhancing Predictive Business Analytics with 

Deep Learning and Ensemble Methods: A Comparative Study of LSTM Networks and Random Forest 
Algorithms. International Journal of AI and ML, 1(2). 

Kontovourkis, O., Phocas, M. C., & Lamprou, I. (2015). Adaptive kinetic structural behavior through machine 
learning: optimizing the process of kinematic transformation using artificial neural networks. AI EDAM, 
29(4), 371–391. 

Little, M. A. (2019). Machine learning for signal processing: data science, algorithms, and computational 
statistics. Oxford University Press, USA. 

Liu, R., Sarkar, A., Solovey, E., & Tschiatschek, S. (2019). Evaluating Rule-based Programming and 
ReinforcementLearning for Personalising an Intelligent System. IUI Workshops. 

Lwakatare, L. E., Raj, A., Crnkovic, I., Bosch, J., & Olsson, H. H. (2020). Large-scale machine learning 
systems in real-world industrial settings: A review of challenges and solutions. Information and Software 



         ISSN 2828-366X (online) | 2963-9980 (Cetak) 

Cebong, Vol. 4 No. 1, November (2024): pp. 23-30 

30 

Technology, 127, 106368. 
Mitra, A. (2016). Fundamentals of quality control and improvement. John Wiley & Sons. 
Mittal, M., Goyal, L. M., Hemanth, D. J., & Sethi, J. K. (2019). Clustering approaches for high‐dimensional 

databases: A review. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 9(3), 
e1300. 

Mohit, M. (2016). The Evolution of Deep Learning: A Performance Analysis of CNNs in Image Recognition. 
Mozaffari, A., Emami, M., & Fathi, A. (2019). A comprehensive investigation into the performance, robustness, 

scalability and convergence of chaos-enhanced evolutionary algorithms with boundary constraints. 
Artificial Intelligence Review, 52(4), 2319–2380. 

Patel, A. A. (2019). Hands-on unsupervised learning using Python: how to build applied machine learning 
solutions from unlabeled data. O’Reilly Media. 

Siderska, J. (2020). Robotic Process Automation—a driver of digital transformation? Engineering 
Management in Production and Services, 12(2), 21–31. 

Vamathevan, J., Clark, D., Czodrowski, P., Dunham, I., Ferran, E., Lee, G., Li, B., Madabhushi, A., Shah, P., 
& Spitzer, M. (2019). Applications of machine learning in drug discovery and development. Nature 
Reviews Drug Discovery, 18(6), 463–477. 

Wang, M., Fu, W., He, X., Hao, S., & Wu, X. (2020). A survey on large-scale machine learning. IEEE 
Transactions on Knowledge and Data Engineering, 34(6), 2574–2594. 

Zhong, G., Wang, L.-N., Ling, X., & Dong, J. (2016). An overview on data representation learning: From 
traditional feature learning to recent deep learning. The Journal of Finance and Data Science, 2(4), 265–
278. 

 

 


